
Title Correlation Set Discovery on Time-Series Data

Author(s) Amagata, Daichi; Hara, Takahiro

Citation

Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in
Bioinformatics). 2019, 11707, p. 275-290

Version Type AM

URL https://hdl.handle.net/11094/92852

rights © 2019, Springer Nature Switzerland AG.

Note

Osaka University Knowledge Archive : OUKAOsaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

Correlation Set Discovery on Time-series Data

Daichi Amagata and Takahiro Hara

Osaka University, Osaka, Japan
{amagata.daichi, hara}@ist.osaka-u.ac.jp

Abstract. Time-series data analysis is essential in many modern appli-
cations, such as financial markets, sensor networks, and data centers, and
correlation discovery is a core technique for the analysis. In this paper,
we address a novel problem that computes a k-sized time-series dataset
where the minimum Pearson correlation of any two time-series in the set
is maximized. This problem discovers a group of time-series, which are
highly correlated with each other, from a given time-series dataset with-
out any prior knowledge, thus helps many analytical applications. We
show that this problem is NP-hard, and design an approximate heuristic
solution that provides a high quality result with fast response time. Ex-
tensive experiments on real and synthetic datasets verify the efficiency,
effectiveness, and scalability of our solution.

Keywords: Time-series · Correlation set

1 Introduction

In the IoT era, many data can be represented as time-series, i.e., sequences
of data points obtained by successive measurements. Time-series analysis is an
important task in many applications, such as financial markets [14] and sensor
networks [25]. In this paper, we focus on correlation discovery, which is also
known to be an important tool for time-series analysis [6, 17, 20], and address a
novel problem of correlation set discovery from a time-series dataset.

For many data mining and discovery tasks, it is interesting to discover an
unknown pattern from a given time-series dataset [1, 8, 11], because such a pat-
tern would be a rule and/or feature of the dataset. In this paper, we consider
that a set of time-series, which are highly correlated with each other, indicates
a pattern. Because of the large size of the dataset, it is infeasible to obtain the
set by visual inspection. Efficient extracting such a set from a given time-series
dataset is therefore an interesting problem. Besides, if the obtained set size is
still large, it may be hard to analyze, which requires that user can limit the
result size. Let ρ(t, t′) be the Pearson correlation between two time-series t and
t′. Given a result size k, a user-specified threshold θ, and a set of time-series
data T , our problem is to compute a set A ⊂ T such that |A| = k, for ∀t, t′ ∈ A,
ρ(t, t′) ≥ θ, and the minimum ρ(t, t′) is maximized.

Our problem can be used in many applications, e.g., pattern (rule) discov-
ery, feature extraction, data exploration, and scientific observation. For example,

2 D. Amagata et al.

-1.5

-0.5

0.5

1.5

2.5

0 20 40 60 80 100 120

(a) Correlated time-series in Google

-1

1

3

5

7

9

0 25 50 75 100 125 150 175 200 225 250 275 300 325

(b) Correlated time-series in GreenHouseGas

Fig. 1. Time-series datasets provided by our algorithm where k = 25 and θ = 0.8

Figure 1 illustrates two sets of z-normalized time-series (identified by our algo-
rithm).

Figure 1(a) illustrates a set of 25 time-series in Google dataset (the CPU
rate of each machine in Google compute cells) [19]. To achieve high performance
computing in data centers, it is important to take into account the correlation of
resource utilization (correlated machines should be located in different servers)
[9]. By discovering a correlation group (e.g., Figure 1(a)), administrators can
know the machine group that should be divided for performance tuning. This
example shows that our problem brings benefits to data center applications.

Environmental analysis is also an application of our problem. It has recently
been found that greenhouse gas emissions are spatially correlated (e.g., industrial
region) [10]. Investigating how far each emission affects others is also interesting
from a scientific viewpoint. Correlation set discovery achieves this by identifying
areas where correlated time-series have been observed (e.g., as in Figure 1(b)).
This result is also important for policy makers to establish new environmental
protection policies in those areas.

Challenge. In fact, this problem is NP-hard, so exact solutions are impractical,
suggesting that approximate heuristic approaches are necessary. To design such
a heuristic algorithm, we have to address the following challenges.

(1) High quality result (effectiveness). Since the optimal result is not obtained
practically, a heuristic algorithm needs to have insights that can be used to
discover a data space where time-series in the space are correlated. An intuitive
approach is to explore such data spaces in offline pre-processing time. However,
thresholds θ are normally different for each user, thus pre-processing for specific
thresholds does not make sense.

(2) Computational efficiency. In the above applications, users may explore a
correlation set with varying k and θ. To enable interactive explorations, an al-
gorithm should provide a high quality result with fast response time.

Contributions. We overcome these non-trivial challenges and propose an effi-
cient greedy algorithm. Our contributions are summarized as follows.

Correlation Set Discovery on Time-series Data 3

– We address the problem of computing a correlation set on time-series data
(Section 2). To the best of our knowledge, we are the first to tackle this
problem.

– We show that this problem is NP-hard, and propose a heuristic approxi-
mate algorithm (Section 3). Our greedy algorithm employs locality-sensitive
hashing to obtain an approximate result with fast response time. Theoret-
ical analysis shows that the algorithm has linear scalability with respect
to |T |, l, and k, where T is the set of time-series and l is the time-series
length. This result shows a better performance than that of a baseline which
employs existing technique and incurs quadratic time w.r.t. |T |.

– The results of our experiments using real and synthetic datasets demonstrate
the efficiency, effectiveness, and scalability of our solution (Section 4).

In addition to the above contents, we discuss related work in Section 2, and
Section 5 concludes this paper.

2 Preliminary

2.1 Problem definition

A time-series t is described as t = (t[1], t[2], ..., t[l]), where t[i] is a real value
and l is the length of t. We assume that the length of each time-series in a
given dataset T is the same [17] and all time-series in T are z-normalized1 in
advance like the real datasets in UCR time-series data archive2. (Note that
normalizing time-series by z-normalization is currently common assumption to
measure time-series similarity and obtain meaningful results [23, 24, 26].) Let
∥t, t′∥ be the Euclidean distance between two z-normalized time-series t and t′.
The Pearson correlation between t and t′, ρ(t, t′), is obtained as follows [17].

ρ(t, t′) = 1− ∥t, t′∥2

2l

We here define correlation set Tθ.

Definition 1 (Correlation set). Given a threshold θ and a set of time-series
data T , a correlation set Tθ ⊆ T satisfies that ∀t, t′ ∈ Tθ, ρ(t, t

′) ≥ θ.

The idea for selecting the Pearson correlation as similarity measure is twofold.
First, its computational cost is linear to l, i.e., O(l). The representative simi-
larity measures for time-series are the Euclidean distance (which corresponds to
the Pearson correlation) and dynamic time warping (DTW) [21]. Unfortunately,
DTW incurs O(l2) time to measure the similarity between two time-series. Sec-
ond, ρ(t, t′) ∈ [−1, 1], thereby specifying θ is not a difficult task (although DTW
does not have such a bound).

It is desirable for users to be able to specify a result size k, in order to
obtain a reasonable sized correlation set for easy data exploration and pattern

1 https://en.wikipedia.org/wiki/Standard_score
2 https://www.cs.ucr.edu/~eamonn/time_series_data_2018/

4 D. Amagata et al.

discovery. One of the most interesting correlation set T ∗
θ is the one of size k

that maximizes the minimum Pearson correlation between time-series in the set,
which is formally described as:

T ∗
θ = argmax

Tθ⊆T, |Tθ|=k

f(Tθ) (1)

f(Tθ) = min
t,t′∈Tθ

ρ(t, t′) (2)

where Tθ is a correlation set. If there is no correlation set of size k in a given
time-series set T , it is reasonable to provide the correlation set of the largest
size, i.e.,

T ∗
θ = argmax

Tθ⊆T
|Tθ|. (3)

Ties are broken by selecting the correlation set that maximizes Equation (2).
Now we are ready to define the problem in this paper and its hardness.

Definition 2 (Correlation set discovery problem). Given a set of time-
series data T , a result size k, and a threshold θ, this problem is to discover the
correlation set A that follows Equation (1) if there is a correlation set of size
k in T . Otherwise, this problem is to discover the correlation set A that follows
Equation (3).

Theorem 1 (Hardness). The correlation set discovery problem is NP-hard.

Proof. We first assume that there is at least a correlation set of size k in T .
We show that our problem corresponds to the k-dispersion problem [18] in this
case. The k-dispersion problem is defined as follows: Given a node set V =
{v1, v2, ..., v|V |}, this problem is to find a subset V ′ of V with |V ′| = k such that
minv,v′∈V ′ dist(v, v′) is maximized. This problem is shown to be NP-hard. In
our problem, each time-series t and the Pearson correlation ρ(t, t′) respectively
correspond to a node v and dist(v, v′). This concludes that computing Equation
(1) is NP-hard. Next, we assume that there is no k-sized correlation set in a given
T . In this case, we have to compute Equation (3). Consider that a time-series
t is a node v and if ρ(t, t′) ≥ θ, there is an edge between v and v′. Now this
problem corresponds to finding the maximum clique in a graph, which is also
well known to be NP-hard. Theorem 1 therefore holds. □

Due to Theorem 1, it is not feasible to obtain the optimal answer. Hence, we
need to design a heuristic algorithm that can efficiently provide an approximate
answer set A with high f(A). Note that it is impossible to know in advance
whether or not there is a correlation set of size k in a given T . We therefore
focus on designing an algorithm that can obtain a result set A incrementally to
guarantee that A is a correlation set.

2.2 Related Work

The Pearson correlation is a core similarity function, thereby correlation discov-
ery on time-series data has been extensively studied. Literatures [2, 6, 17, 20, 27]
tackled the problem of discovering (all) correlation pairs. Among them, the most

Correlation Set Discovery on Time-series Data 5

similar to our problem is [17], so we extend the algorithm proposed in [17] for
our problem. We compare our algorithm with the extended algorithm, and con-
firm that computing all correlation pairs does not support efficient correlation
set discovery. Our experimental results show that our algorithm significantly
outperforms the extended algorithm.

One of other related works is motif discovery. The motif of a given time-
series is the most correlated pair of subsequences. Efficient motif discovering
algorithms have been proposed for in-memory data [11, 16, 22] and disk-resident
data [15]. Matrix profile project, e.g., [12, 23, 17], achieves fast motif discovery.
However, these works focus only on a single pair, thereby we do not consider
their solutions. This discussion also suggests that our problem is different from
finding some similar, e.g., kNN, time-series to a given query time-series [7].

3 Proposed Algorithm

This section presents our proposed algorithm Greedy-L. This algorithm employs
a novel approach, i.e., greedy heuristic combined with locality sensitive hashing.

3.1 Greedy Heuristic Framework

First, we introduce the framework of the greedy heuristic, and we use the nota-
tions in the proof of Theorem 1. Given k and a node set V , this greedy heuristic
computes a result set V ′ as follows.

1. Insert the pair of nodes (v, v′) with the maximum distance into V ′.
2. Consider an objective function f(V ′, v) = minv′∈V ′dist(v, v′). Insert the

node v ∈ V \V ′ into V such that v maximizes f(V ′, v).
3. Iterate the above operation until |V ′| becomes k.

This approach can provide an approximate answer in polynomial time, and
existing experimental results show that it provides a high quality result in prac-
tice [4]. However, straightforward adaptation of this approach to our prob-
lem is not efficient. This is because the first operation needs O(l|T |2) time
and each iteration needs O(kl|T |) time, so the straightforward approach incurs
O(l(|T |2 + k2|T |)) time.

3.2 Locality Sensitive Hashing

The above approach incurs quadratic time cost. We break this quadratic barrier
by optimizing LSH (locality sensitive hashing) usage. We here define LSH.

Definition 3 (Locality-sensitive hashing). Given a distance r, an approx-
imate ratio c (c > 1), and two probabilities p1 and p2 (p1 > p2), a hash function
h is (r, cr, p1, p2)-sensitive, if it satisfies the following both conditions:

– If ∥t, t′∥ ≤ r, then Pr[h(t) = h(t′)] ≥ p1;
– If ∥t, t′∥ ≥ cr, then Pr[h(t) = h(t′)] ≤ p2.

6 D. Amagata et al.

The LSH function commonly used in the Euclidean space is shown below [3].

h(t) = ⌊a · t+ bw

w
⌋ (4)

Note that a is a random vector with each dimension independently chosen from
the standard normal distribution N (0, 1), and its length is l. b is a real number
randomly chosen from [0,w), and w is a real number that represents the width
of h. Recall that we are interested in time-series t and t′ satisfying ρ(t, t′) ≥ θ,
thus their hash values should be the same (or very close). To this end, we set

w =
√
2l(1− θ). (5)

Let θE =
√
2l(1− θ), and let d = ∥t, t′∥. [3] shows that Pr[h(t) = h(t′)] can be

obtained as follows:

p(d) = Pr[h(t) = h(t′)]

=

∫ θE

0

1

d
f2(

x

d
)(1− x

θE
)dx

= 2norm(
θE
d
)− 1− 2√

2π

d

θE
(1− e−

θ2E
2d2) (6)

where f2(z) =
2√
2π

e−
z2

2 and norm(·) is the cumulative distribution function of

a random variable following N (0, 1). Note that h(t) has the following lemma [5].

Lemma 1. The LSH obtained from Equation (4) is (θE, cθE, p(θE), p(cθE))-
sensitive.

Because h(·) provides the same (or similar) hash values if two time-series
are very similar, it is intuitive that we do not need to compare two time-series
with totally different hash values. However, it is important to note that using
a single h(·) cannot avoid unnecessary computation well, because many time-
series with far distance (i.e., low Pearson correlation) may have the same hash
values. To avoid this, a compound LSH function G(t) = (h1(t), h2(t), ..., hm(t))
is employed, where each component of G(t) is h(t) and independently generated
[3]. We consider that G(t) is a key of t, and two time-series with high Pearson
correlation would have the same or similar keys.

It is important to note that existing studies utilize LSH as indices, i.e., offline
processing, but we utilize LSH for online processing to deal with arbitrary θ, see
Equation (5).

3.3 Main Techniques

Assume that each time-series t ∈ T is assigned its key K and is inserted into
the bucket with key K, BK . One may consider the following simple combination
of the greedy heuristic and LSH. We compute a pair of two time-series ⟨ti, tj⟩,
which is firstly added to A, by using LSH. In other words, if we compute the pair

Correlation Set Discovery on Time-series Data 7

with the highest Pearson correlation for ∀BK ∈ B, where B is the set of buckets,
we can obtain ⟨ti, tj⟩. Then we compute t∗ = argmaxt∈T\Af(A, t), where

f(A, t) = min
t′∈A

ρ(t, t′),

by scanning T , and t∗ is inserted into A. This operation is iterated until |A|
becomes k.

Although this seems to reduce computational cost, it is not sufficient. In each
iteration, we compute t∗ based on the intermediate A, so the pair ⟨ti, tj⟩, which
is firstly added to A, has a large influence on the final quality and size of A. Due
to this property, ⟨ti, tj⟩ has to satisfy the following requirements.

– ρ(ti, tj) is high as much as possible: Because f(A), which is described in
Equation (2), has submodularity, i.e., f(A) ≥ f(A ∪ {t}), the first pair
should have high Pearson correlation. Otherwise, the quality of the final
result becomes low.

– ⟨ti, tj⟩ exists in a large group of time-series which are correlated with each
other: This requirement is necessary to provide A such that |A| = k.

We below elaborate how to discover such a pair. Assume that each time-
series t in T is assigned a key K by G(t). For each bucket BK ∈ B, we compute
the highest Pearson correlation in BK denoted by ρK . Recall that higher ρK
is better due to the submodularity of f(A). We next consider the size of the
adjacent buckets which are defined below.

Definition 4 (Adjacent bucket). Given a set of buckets B and a bucket
BK ∈ B, each bucket BK′ which is an adjacent bucket of BK , satisfies that
|{i |hK

i = hK′

i }| = m− 1 where hK
i (hK′

i) is the i-th hash value of K (K ′).

Let Bθ be the set of buckets BK such that ρK ≥ θ. We retrieve the adjacent
buckets of BK in Bθ and compute sK which is the summation of their sizes (the
number of time-series in the buckets) and |BK |. More formally,

sK = |BK |+
∑

|BK′ |,

where BK′ is an adjacent bucket of BK . Recall that time-series in the same
bucket or buckets with similar keys tend to be correlated. Therefore, if sK is
large, time-series in BK would exist in a large group of time-series which are
correlated with each other. Based on the above idea, we select the pair of two
time-series with the highest Pearson correlation in BK where ρK · sK

|T | is the

maximum among Bθ. (Because ρK ∈ [θ, 1], sK has to be normalized and |T | is
used to achieve this.) The complexity of this operation is as follows.

Lemma 2. We can select the first two time-series with O(ml|T |) time.

Proof. Computing G(·) for each time-series needs O(ml) time, thus the hashing
incurs O(ml|T |) time. Let β be the number of buckets ∈ B where |BK | ≥ 2, and
let n be the average number of time-series in BK . To obtain ⟨t, t′⟩, we need
O(βn2). However, by setting a sufficiently large constant as m, n can be very
small, so we have O(βn2) ≪ O(ml|T |). We can compute the first two time-series

8 D. Amagata et al.

by scanning Bθ, and |Bθ| ≤ |T |. Then, we can conclude that the time complexity
is O(ml|T |). □

Next, we consider how to efficiently find a time-series which has high Pearson
correlation with each time-series in an intermediate result A. Our idea is simple
yet effective. Because two time-series with high Pearson correlation share the
same or similar key, promising time-series, which can be the next result t∗, exist
in the adjacent buckets of the buckets in which the time-series ∈ A exist. We
compute t∗ from the set of the buckets denoted by S, and its time complexity is
O(l|S|).
Lemma 3. We can obtain t∗ = argmaxt∈S\Af(A, t) with O(l|S|) time.

Proof. Assume that a time-series t is in A and A = {t}, and for ∀ti ∈ S\{t},
we compute ρ(t, ti). Assume further that t∗ = t′ and each time-series ti caches
f(A, t). When we find the next t∗, we can obtain the exact f(A, ti) of a given
ti ∈ S\A by comparing ρ(t′, ti) with the cached value, which needs only O(l)
time. Thus we can obtain t∗ with O(l|S|) time. □
Besides, a lower-bound of the existing probability of a time-series t, which sat-
isfies that f(A, t) ≥ θ, in S is obtained as follows.

Lemma 4. We have

Pr[t ∈ S, f(A, t) ≥ θ] ≥ p(θE)
m + p(θE)

m−1(1− p(θE))m.

Proof. From Equation (6) and Definition 4. □

3.4 Algorithm Description

Algorithm 1 details Greedy-L. Greedy-L first obtains the key of each time-series
(lines 1–2). Then Greedy-L computes ⟨t, t′⟩, where t, t′ ∈ BK and ρ(t, t′) · sK

|T | is

the maximum in Bθ (lines 3–17). The pair ⟨t, t′⟩ is inserted into A. Greedy-L
retrieves the next result t∗ from S which is the union of BK such that t, t′ ∈ BK

and the adjacent buckets of BK . Also, for each iteration (lines 20–26), after
Greedy-L inserts t∗ = argmaxt∈S\Af(A, t) into A, BK , where t∗ ∈ BK , and its
adjacent buckets are inserted into S (line 24). This is repeated until |A| becomes
k or Greedy-L identifies that ∄t ∈ S such that f(A, t) ≥ θ.

Now we show our main result: the time complexity of Greedy-L is linear to
each parameter and breaks the quadratic barrier.

Theorem 2. Greedy-L needs O(ml|T |+ kl|S|) time to provide A, where S ⊆ T .

Proof. From Lemma 2, lines 1–17 need O(ml|T |) time. To obtain sK , we need
to find the adjacent buckets of BK . We cache the value range of each LSH hi,
and z-normalization provides the fact that the range is very small as shown in
Figure 1. Thus sK is obtained by O(m) time, i.e., lines 14–17 incurs O(m|Bθ|)
time, and O(m|Bθ|) ≪ O(ml|T |). Lines 19, 21, and 24 respectively need O(l|S|)
time. As a result, the time complexity of Greedy-L is O(ml|T |+ kl|S|). □
Discussion. We exploit the adjacent buckets to effectively select buckets for the
candidates of the result. One may consider about employing near buckets that

Correlation Set Discovery on Time-series Data 9

Algorithm 1: Greedy-L

1 for ∀t ∈ T do
2 BK ← BK ∪ {t} where K = (h1(t), h2(t), ..., hm(t))

3 Bθ ← ∅, P ← ∅
4 for ∀BK ∈ B where |BK | ≥ 2 do
5 tK , t′K ← ∅, ρK ← −1
6 for ∀ti ∈ BK do
7 for ∀tj ∈ BK do
8 if ρK < ρ(ti, tj) then
9 ρK ← ρ(ti, tj), ⟨tK , t′K⟩ ← ⟨ti, tj⟩

10 if ρK ≥ θ then
11 Bθ ← Bθ ∪BK

12 P ← P ∪ ⟨ρK , tK , t′K⟩

13 t, t′ ← ∅, µ = 0
14 for ∀BK ∈ Bθ do
15 sK ← |BK |+

∑
|BK′ | where BK′ ∈ Bθ is the nearest bucket of BK

16 if ρK · sK|T | > µ then

17 µ← ρK · sK|T | , ⟨t, t
′⟩ ← ⟨tK , t′K⟩

18 A← ⟨t, t′⟩
19 S ← BK ∪BN

K′ where t, t′ ∈ BK and BN
K′ is the set of the nearest bucket of BK

in B
20 while |A| < k do
21 t∗ ← argmax

t∈S\A
f(A, t)

22 if f(A, t∗) ≥ θ then
23 A← A ∪ {t∗}
24 S ← S ∪BK ∪BN

K′ where t∗ ∈ BK and BN
K′ follows line 19

25 else
26 break

share (m−m′) LSHs with a given bucket. If we employ this, Greedy-L loses its
efficiency significantly due to large increase of S (the number of near buckets
of a given bucket is

(
m
m′

)
). Besides, specifying an appropriate m′ is not trivial.

Greedy-L therefore employs the adjacent buckets.
We next show that Greedy-L is a parallel-friendly framework. Recall that each

LSH in G(·) is independently generated. This computation can be parallelized.
Also, it can be seen that computing ρK , sK , and t∗ is parallelized by dividing
B, Bθ, and |S| into some pieces.

4 Experiments

We present our empirical study that evaluates the performance of Greedy-L.

10 D. Amagata et al.

4.1 Setting

Datasets. In our experiments, we used two real datasets and a synthetic dataset
introduced below.

– GreenHouseGas [13]: This dataset has 46,736 time-series, and each time-
series consists of 327 green house gas concentrations.

– Google: This dataset consists of 10,380 time-series (CPU rates of machines
in Google compute cells) with length 128.

– Rand: This dataset is generated by a random walk technique. When gener-
ating a time-series t, we randomly choose the first value (t[1]) in {−1, 1}.
The subsequent value is generated by t[i + 1] = t[i] + N (0, 1) [16]. We set
|T | = 100, 000 and l = 1, 000 by default.

(We conducted experiments on other datasets but omit their results because
they are consistent.) When we use a dataset, all time-series in the dataset are
memory-resident.

Algorithms. We evaluated the following algorithms.

– Greedy-M: this is an extended version of [17], which is a state-of-the-art
online algorithm to compute all time-series pairs whose Pearson correlation
satisfies θ. Greedy-M employs this technique and the greedy heuristic in-
troduced in the beginning of the proposed algorithm section, to compute
A.

– Greedy-L: the proposed algorithm in this paper.
– Greedy-L−: this algorithm utilizes LSH only to obtain the first two time-

series. The greedy heuristic is also employed in each iteration to update the
result set.

– Greedy-L (wobs): this algorithm normally executes the same operations as
those in Greedy-L, but selects the first bucket BK such that ρK is the
highest among B.

All algorithms were implemented in C++, and all experiments were conducted
on a PC with Intel Xeon E5-2687W v4 processors (3.0GHz) and 512GB RAM.

Criteria. We measured the average of each metric introduced below. We run
the algorithms 50 times for each experiment.

– Running time (efficiency). This metric is defined as the time to provide a
correlation set A.

– F (A) = f(A) · |A|
k (effectiveness). Although the above algorithms guarantee

that A is a correlation set, they do not guarantee that |A| = k. It is unfair
to compare algorithms based on f(A), since the algorithms may provide

different result size. We therefore normalize f(A) by |A|
k .

Recall that, as shown in Theorem 1, the exact answer A∗ is not obtained prac-
tically, so comparing F (A), where A is provided by our solution, with F (A∗) is
impossible.

Correlation Set Discovery on Time-series Data 11

4 5 6 7 8 9 10 11 12 13 14 15 16
0

0.2

0.4

0.6

0.8

1

1.2

1.4

m (GreenHouseGas)

R
u

n
n

in
g

 t
im

e
 [

s
e

c
]

Greedy−L (wobs)Greedy−L

Greedy−L
−

(a) Running time (Green-
HouseGas)

2 3 4 5 6 7 8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

m (Google)

R
u

n
n

in
g

 t
im

e
 [

s
e

c
]

Greedy−L (wobs)Greedy−L

Greedy−L
−

(b) Running time
(Google)

8 9 10 11 12 13 14 15 16
0

2

4

6

8

10

12

m (Rand)

R
u

n
n

in
g

 t
im

e
 [

s
e

c
]

Greedy−L (wobs)Greedy−L

Greedy−L
−

(c) Running time (Rand)

4 5 6 7 8 9 10 11 12 13 14 15 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

m (GreenHouseGas)

F
(A

)

Greedy−L (wobs)Greedy−L

Greedy−L
−

(d) F (A) (GreenHouse-
Gas)

2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

m (Google)

F
(A

)
Greedy−L (wobs)Greedy−L

Greedy−L
−

(e) F (A) (Google)

8 9 10 11 12 13 14 15 16
0.7

0.75

0.8

0.85

0.9

0.95

1

m (Rand)

F
(A

)

Greedy−L (wobs)Greedy−L

Greedy−L
−

(f) F (A) (Rand)

Fig. 2. Impact of m

Table 1. Tuning m for each algorithm

Algorithm GreenHouseGas Google Rand

Greedy-L 8 6 13
Greedy-L− 13 5 11

Greedy-L (wobs) 6 4 13

4.2 Result

By default, θ = 0.8, k = 20 in the cases of GreenHouseGas and Google, and
k = 100 in the case of Rand.

Varying m.We first tunem (the number of h(·) in the compound LSH function)
of Greedy-L−, Greedy-L, and Greedy-L (wobs) for each dataset by using the
default parameter setting. Figure 2 illustrates the impact of m. We can see that
m affects the performances of the three algorithms. For example, when m is
small, there is a large number of time-series in the same bucket, so computing
the first two time-series which will be in A needs long time. Figures 2(d) and 2(f)
show that Greedy-L− and Greedy-L provide stable F (A) (but Greedy-L (wobs)
does not). On the other hand, Figure 2(e) shows that Greedy-L provides bad
result quality when m is small. When m is small, there are many non-correlated
time-series in the same bucket. In this case, sK cannot reflect data distribution.
Based on the result, we set m as shown in Table 1. (F (A) is prioritized.)

12 D. Amagata et al.

5 10 15 20 25 30
10

−1

10
0

10
1

10
2

10
3

k (GreenHouseGas)

R
u

n
n

in
g

 t
im

e
 [

s
e

c
]

Greedy−L (wobs)Greedy−L

Greedy−L
−

Greedy−M

(a) Run time (Green-
HouseGas)

5 10 15 20 25 30
10

−2

10
−1

10
0

10
1

10
2

k (Google)

R
u

n
n

in
g

 t
im

e
 [

s
e

c
]

Greedy−L (wobs)Greedy−L

Greedy−L
−

Greedy−M

(b) Run time (Google)

0 50 100 150 200 250 300
10

0

10
1

10
2

10
3

10
4

10
5

k (Rand)

R
u

n
n

in
g

 t
im

e
 [

s
e

c
]

Greedy−L (wobs)Greedy−L

Greedy−M Greedy−L
−

(c) Run time (Rand)

5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k (GreenHouseGas)

F
(A

)

Greedy−L (wobs)Greedy−L

Greedy−M Greedy−L
−

(d) F (A) (GreenHouse-
Gas)

5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k (Google)

F
(A

)
Greedy−L (wobs)Greedy−L

Greedy−M Greedy−L
−

(e) F (A) (Google)

0 50 100 150 200 250 300
0.7

0.75

0.8

0.85

0.9

0.95

1

k (Rand)

F
(A

)

Greedy−L (wobs)Greedy−L

Greedy−M Greedy−L
−

(f) F (A) (Rand)

Fig. 3. Impact of k

Varying k. Figures 3(a) and 3(b) show that all the algorithms are not affected
by k. Since Greedy-M incurs the overhead from computing all pairs Pearson
correlation, i.e., O(l|T |2), it is reasonable. The other algorithms have two main
computational overheads: hashing and iteration. When k is small, hashing be-
comes a dominant factor, thereby the result is obtained. When k is large, on the
other hand, the running time of the algorithms except Greedy-M increases as
shown in Figure 3(c). We see that Greedy-L scales better than Greedy-L−, be-
cause Greedy-L− scans the whole dataset in each iteration. Note that Greedy-L
runs up to 1,500 times faster than Greedy-M.

Let us focus on result quality, and Figures 3(d) and 3(e) show that Greedy-L
provides the best result among the four algorithms. (Because Rand has many cor-
related time-series, the four algorithms provide almost the same result, as shown
in Figure 3(f).) In particular, Greedy-M, Greedy-L−, and Greedy-L (wobs) fail
to return a good result in the case of GreenHouseGas. In this dataset, the pair of
two time-series with the highest Pearson correlation exists in a very small group.
The three algorithm (often) return this set, but Greedy-L can avoid this situation
and provides a larger group by exploiting LSH, which verifies the effectiveness
of our approach. (Recall that the result obtained by Greedy-L is illustrated in
Figure 1.)

Varying θ. Figure 4 shows the impact of threshold. As shown in Figures 4(a)–
4(c), as θ increases, running time of each algorithm decreases. Even in this case,

Correlation Set Discovery on Time-series Data 13

0.7 0.75 0.8 0.85 0.9
10

−1

10
0

10
1

10
2

10
3

threshold (GreenHouseGas)

R
u

n
n

in
g

 t
im

e
 [

s
e

c
]

Greedy−L (wobs)Greedy−L

Greedy−L
−

Greedy−M

(a) Running time (Green-
HouseGas)

0.7 0.75 0.8 0.85 0.9
10

−2

10
−1

10
0

10
1

10
2

threshold (Google)

R
u

n
n

in
g

 t
im

e
 [

s
e

c
]

Greedy−L (wobs)Greedy−L

Greedy−L
−

Greedy−M

(b) Running time
(Google)

0.7 0.75 0.8 0.85 0.9
10

0

10
1

10
2

10
3

10
4

threshold (Rand)

R
u

n
n

in
g

 t
im

e
 [

s
e

c
]

Greedy−L (wobs)Greedy−L

Greedy−M Greedy−L
−

(c) Running time (Rand)

0.7 0.75 0.8 0.85 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

threshold (GreenHouseGas)

F
(A

)

Greedy−L (wobs)Greedy−L

Greedy−M Greedy−L
−

(d) F (A) (GreenHouse-
Gas)

0.7 0.75 0.8 0.85 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

threshold (Google)

F
(A

)
Greedy−L (wobs)Greedy−L

Greedy−M Greedy−L
−

(e) F (A) (Google)

0.7 0.75 0.8 0.85 0.9
0.7

0.75

0.8

0.85

0.9

0.95

1

threshold (Rand)

F
(A

)

Greedy−L (wobs)Greedy−L

Greedy−L
−

Greedy−M

(f) F (A) (Rand)

Fig. 4. Impact of θ

0 100 200 300 400 500
10

−1

10
0

10
1

10
2

10
3

10
4

Cardinality [K] (Rand)

R
u

n
n

in
g

 t
im

e
 [

s
e

c
]

Greedy−L (wobs)Greedy−L

Greedy−M Greedy−L
−

(a) Varying |T |

500 1000 1500 2000 2500 3000
10

0

10
1

10
2

10
3

10
4

length (Rand)

R
u

n
n

in
g

 t
im

e
 [

s
e

c
]

Greedy−L (wobs)Greedy−L

Greedy−M Greedy−L
−

(b) Varying l

1 2 3 4 5 6 7 8 9 10 11 12
0

0.5

1

1.5

2

2.5

3

#core (Rand)

R
u

n
n

in
g

 t
im

e
 [

s
e

c
]

Greedy−L

(c) Varying the number of
cores

Fig. 5. Scalability test

Greedy-M is very slow and the other algorithms keep outperforming Greedy-M
significantly.

Figures 4(d) and 4(e) show that the Greedy-L (wobs) often returns a worse
result than the other algorithms. As well as Greedy-L, Greedy-L (wobs) finds the
next result (i.e., t∗) only from a subset of T , and the subset is also dependent
on the first two time-series of A. This result implies that ignoring sK misses
identifying a group of time-series, and Greedy-L (wobs) cannot be robust.

14 D. Amagata et al.

Varying |T |, l, and the number of cores. We also investigate the scalability
to the size of a given dataset,the length of a time-series, and the number of avail-
able CPU cores by using Rand. (We used OpenMP to support parallelization.)
The results are respectively shown in Figures 5(a), 5(b), and 5(c). (We omit the
results of F (A) because they are almost consistent like Figure 4(f).) Recall that
the time complexity of Greedy-M is O(|T |2l), so its running time is significantly
large, which is shown in Figure 5(a) (we omit the result of Greedy-M in the cases
of |T | = 250, 000 and |T | = 500, 000). Since the time complexities of the other
algorithms are linear to |T |, the experimental results follow this fact. Impact of
l also has this case.

Figure 5(c) shows that Greedy-L reduces its running time with increase of
available cores. For example, by using 8 cores, its running time becomes approx-
imately 3 times faster than the case of using only 1 core.

Remark. As Theorem 2 also argues, Greedy-L significantly outperforms the
approach using existing techniques. In addition, Greedy-L provides a high quality
result, i.e., A with high f(A), in practice, meaning that Greedy-L satisfies the
two important requirements, effectiveness and efficiency.

5 Conclusion

In this paper, we addressed a novel problem of discovering a correlation set on
time-series data. We showed that this problem is NP-hard, and proposed an
efficient greedy heuristic algorithm, Greedy-L. Greedy-L employs locality sensi-
tive hashing to reduce running time. In particular, we devised a novel technique
that exploits locality-sensitive hashing to discover a large group of time-series
which are correlated with each other. The experimental results demonstrate the
efficiency, effectiveness, and scalability.

Acknowledgment. This research is partially supported by JSPS Grant-in-Aid
for Scientific Research (A) Grant Number 18H04095, JSPS Grant-in-Aid for
Young Scientists (B) Grant Number JP16K16056, and JST CREST Grant Num-
ber J181401085.

References

1. Amagata, D., Hara, T.: Mining top-k co-occurrence patterns across multiple
streams. TKDE 29(10), 2249–2262 (2017)

2. Cole, R., Shasha, D., Zhao, X.: Fast window correlations over uncooperative time
series. In: KDD. pp. 743–749 (2005)

3. Datar, M., Immorlica, N., Indyk, P., Mirrokni, V.S.: Locality-sensitive hashing
scheme based on p-stable distributions. In: SoCG. pp. 253–262 (2004)

4. Drosou, M., Pitoura, E.: Diversity over continuous data. IEEE Data Eng. Bull.
32(4), 49–56 (2009)

5. Gan, J., Feng, J., Fang, Q., Ng, W.: Locality-sensitive hashing scheme based on
dynamic collision counting. In: SIGMOD. pp. 541–552 (2012)

Correlation Set Discovery on Time-series Data 15

6. Guo, T., Sathe, S., Aberer, K.: Fast distributed correlation discovery over streaming
time-series data. In: CIKM. pp. 1161–1170 (2015)

7. Huang, Q., Feng, J., Zhang, Y., Fang, Q., Ng, W.: Query-aware locality-sensitive
hashing for approximate nearest neighbor search. PVLDB 9(1), 1–12 (2015)

8. Kato, S., Amagata, D., Nishio, S., Hara, T.: Monitoring range motif on streaming
time-series. In: DEXA. pp. 251–266 (2018)

9. Kim, J., Ruggiero, M., Atienza, D., Lederberger, M.: Correlation-aware virtual ma-
chine allocation for energy-efficient datacenters. In: DATE. pp. 1345–1350 (2013)

10. Li, L., Hong, X., Tang, D., Na, M.: Ghg emissions, economic growth and urban-
ization: A spatial approach. Sustainability 8(5), 462 (2016)

11. Li, Y., Yiu, M.L., Gong, Z., et al.: Quick-motif: An efficient and scalable framework
for exact motif discovery. In: ICDE. pp. 579–590 (2015)

12. Linardi, M., Zhu, Y., Palpanas, T., Keogh, E.: Matrix profile x: Valmod-scalable
discovery of variable-length motifs in data series. In: SIGMOD. pp. 1053–1066
(2018)

13. Lucas, D., Kwok, C.Y., Cameron-Smith, P., Graven, H., Bergmann, D., Guilderson,
T., Weiss, R., Keeling, R.: Designing optimal greenhouse gas observing networks
that consider performance and cost. Geoscientific Instrumentation, Methods and
Data Systems 4(1), 121 (2015)

14. Marti, G., Andler, S., Nielsen, F., Donnat, P.: Clustering financial time series: How
long is enough? In: IJCAI. pp. 2583–2589 (2016)

15. Mueen, A., Keogh, E., Bigdely-Shamlo, N.: Finding time series motifs in disk-
resident data. In: ICDM. pp. 367–376 (2009)

16. Mueen, A., Keogh, E., Zhu, Q., Cash, S., Westover, B.: Exact discovery of time
series motifs. In: SDM. pp. 473–484 (2009)

17. Mueen, A., Nath, S., Liu, J.: Fast approximate correlation for massive time-series
data. In: SIGMOD. pp. 171–182 (2010)

18. Ravi, S., Rosenkrantz, D.J., Tayi, G.K.: Facility dispersion problems: Heuristics
and special cases. In: Algorithms and Data Structures, pp. 355–366 (1991)

19. Reiss, C., Wilkes, J., Hellerstein, J.L.: Google cluster-usage traces: format+
schema. Google Inc., White Paper pp. 1–14 (2011)

20. Tsytsarau, M., Amer-Yahia, S., Palpanas, T.: Efficient sentiment correlation for
large-scale demographics. In: SIGMOD. pp. 253–264 (2013)

21. Vlachos, M., Hadjieleftheriou, M., Gunopulos, D., Keogh, E.: Indexing multidi-
mensional time-series. The VLDB Journal 15(1), 1–20 (2006)

22. Yankov, D., Keogh, E., Medina, J., Chiu, B., Zordan, V.: Detecting time series
motifs under uniform scaling. In: KDD. pp. 844–853 (2007)

23. Yeh, C.C.M., Kavantzas, N., Keogh, E.: Matrix profile vi: Meaningful multidimen-
sional motif discovery. In: ICDM. pp. 565–574 (2017)

24. Yeh, C.C.M., Zhu, Y., Ulanova, L., Begum, N., Ding, Y., Dau, H.A., Silva, D.F.,
Mueen, A., Keogh, E.: Matrix profile i: All pairs similarity joins for time series: A
unifying view that includes motifs, discords and shapelets. In: ICDM. pp. 1317–
1322 (2016)

25. Yi, X., Zheng, Y., Zhang, J., Li, T.: St-mvl: Filling missing values in geo-sensory
time series data. In: IJCAI. pp. 2704–2710 (2016)

26. Zhu, Y., Zimmerman, Z., Senobari, N.S., Yeh, C.C.M., Funning, G., Mueen, A.,
Brisk, P., Keogh, E.: Matrix profile ii: Exploiting a novel algorithm and gpus to
break the one hundred million barrier for time series motifs and joins. In: ICDM.
pp. 739–748 (2016)

27. Zhu, Y., Shasha, D.: Statstream: Statistical monitoring of thousands of data
streams in real time. In: VLDB. pp. 358–369 (2002)

